|
|
|
|
Reproduction d'une éspèce |
|
|
La reproduction des lapins
1) La suite de Fibonacci
La suite de Fibonacci est une des suites mathématiques les plus connues. Elle doit son nom au mathématicien italien Lenardo Pisano, plus connu sous le pseudonyme de Fibonacci (1175-1250). Dans un problème posé dans un de ses ouvrages, le Liber Abaci, Fibonacci nous parle de la croissance d’une population de lapins :
« Possédant initialement un couple de lapins, combien de couples obtient-on en douze mois si chaque couple engendre tous les mois un nouveau couple à compter du second mois de son existence ? »
On suppose que :
- le premier mois, il y a juste une paire de lapins jeunes ;
- le deuxième mois, il y a une paire de lapins adultes
- chaque mois, chaque pair de lapins adultes donne une paire de lapins jeunes
- les lapins ne meurent jamais (donc la suite de Fibonacci est strictement croissante).
On peut également traduire cette reproduction par le schéma suivant :
89/55 = 1,618 et 55/34 = 1,617
On retrouve ce genre de suite dans la croissance de la population d’autres êtres vivants, tel que les abeilles par exemple.
En réalité, une population de lapin ne suit pas aussi strictement cette règle. Les lapins sont polygames, certains meurent plus tôt etc.…
|
|
|
|
|
|
|
Aujourd'hui sont déjà 1 visiteurs (1 hits) Ici!
TPE 2007/2008 LAM
|
|
|
|
|
|
|
|